A Study on the Estimation of Severity Rate for Construction Work

이 민우* 이찬식**
Lee, Min-Woo Lee, Chan-Shik

Abstract

Construction industry is notorious for its poor occupational safety environment. Many attempts have been made to estimate the safety of construction environment. Previous studies have focused on analyzing the frequency of incidences. In this study, we established a novel method to measure the severity rate (SR) of construction incidents. We then computed the SR value by types of facility, work process, work package and trade. Here we provide the first quantitative SR information on construction incidents in Korea. Our results clearly demonstrated an adequacy of our methodology. We believe that this method of SR measurement would serve as a valuable tool to estimate construction safety.

Keywords: Severity Rate, Safety Index, Construction Environment

1. 서 론

1.1 연구의 배경 및 목적

건설공사는 수행해야 하는 작업의 기술적·공간적·기능적 특성과 기후적·요인 등으로 복잡하며 매우 다양한 위험 요인을 내재하고 있으며, 하나의 공사 안에서도 공
종에 따른 위험의 정도가 매우 상이하고 프로젝트에 따라
서도 위험의 크기가 다르게 나타난다.

건설공사의 재해예방을 위하여 산업안전보건법(이하 "산안법"")이행을 목적으로 공사 규모 100억원(상시 근로자수 200인) 이상의 사업장에 대하여 사고예방 조치를
수행하고 안전관리부를 전담하는 안전관리자를 선임하
도록 규정하고 있다. 산안법 시행령 제11조에는 건설프로젝트
에선 안전관리자를 지정하여 할 작업을 규정하고 제12조
에는 안전관리자의 수 및 선임방법에 관하여 규정하고
있다. 이러한 제재예방 노력에도 불구하고, 현재의 안전
관리자 선임기준이 공사의 종류 및 위험도를 고려하지
않고 공사규제와 상시근로자수를 기준으로 선임하도록
규정하고 있어서, 안전관리 수행상과가 떨어지고 특히,
위험도가 높은 공사나 공종의 경우 원가 및 인력관리 측
면에서 비효율성을 초래하고 있는 실정이다.

1997년도의 경우 공사규모 60~120억원(100~199인)의
6위험(9인) 미만 건설사업장의 공사 재해건수 100건당 사
망재해건수는 각각 1.53건, 2.17건으로, 소규모 사업장의
재해가 대규모 사업장의 재해에 비해 상대적으로 높게
나타나고 있다. 이로 건설 사업장에 대한 안전관리업무의
입증으로 건설재해예방기술자와 같은 간직인 안전관리
자지원제도가 있으나, 사업장상 제정하는 전담 안전관리
자가 없이 안전관리업무를 수행함으로써 재해가 많이 발생하고 있다. 또한, 안전관리업무가 건설공사의 종류 및
직종에 따른 위험정도를 정확하게 고려하지 않고 경합적
으로 수행됨으로써 안전관리의 효율성이 떨어진 실정이다.
이런 비효율성은 직종, 공종 등에 따른 위험정도를 정
확화하여 그 고유에 따라 안전관리자를 적절하게 배치
할 수 있다면, 극복될 수 있을 것이다.

이 연구에서는 건설공사의 사고률, 공사, 직종별, 작업경험별 위험정도를 조사·분석하여 위험도를 제시함
으로써, 건설공사의 재해를 지감하고 노동 관련 정책 및
제도 개선을 위한 기초 자료로 활용될 수 있게 하자고
한다.

1.2 연구의 방법 및 범위

본 연구는 다음과 같은 절차와 방법으로 수행하였다.
1) 건설 재해지표 고찰
건설공사에서 발생하는 재해를 측정하는데, 일반적으로 사용되는 지표에 대하여 조사하였다.

2) 건설재해 사고 조사·분석

한국산업안전공단(이하 "안전공단")과 함께 1997년도 산업재해위험분석과 산업재해보험보험금(이하 "재해보험금")의 한 점금지급 자료를 엽서하여, 사고물, 공상, 직중, 작업환경 등 재해사유, 재해사례, 재해건강 후유

정비용 등에 비례 신고하였다.

3) 건설공사의 위험 평가 및 위험 제로

경험이나 위험 확률에 기초하여 위험도를 평가하는 방법은 제조업에서 주로 사용되는 것으로 공정의 평가가능법이 이 연구에서는 안전사고 자료를 바탕으로 건설공사의 위험 정도를 판단하였다. 산재보험금 지급하는 데 근거가 되는 것으로 재해의 위험등급(요소)별로, 직중, 공상 등이 기록되어 있는 요양심사(2) 자료를 바탕으로 재해 건강 정비용이 일사로 재해사례를 기록으로 건설공사의 분야별 위험도를 조사·평가하여 그 정도를 제

시하였다. 기존분야는 사고물 부상에서 도로 건축 등 기술분야의 각 시설물에 포함된 인력의 비율을 고려하여 위험도의 신뢰도를 제시하였다.

4. 예비적 고찰

2. 사례의 근거

안전사고의 결과로 일어난 인명피해 및 재산의 손실을

일으키는 재해는 자연적 재해와 인위적 재해가 있으며, 인

명피해 정도에 따라 사망, 중상, 경상상, 무상상 사고로

분류된다. 산안법 제2조의 3항에 의거하는 산업재해를 함으로

 går노자, 업무에 관계되는 건설물, 설비, 원재료, 가식, 중기, 파손에 의하거나, 기타 업무에 기인하

여 사망 또는 부상하거나 질병에 이르는 것"을 의미

한다. 증례재해 "산업재해 중 사망 및 재미의 선언의 증상

가 심한 것"으로 규정하고 있다.3)

우리나라의 경우 산업재해는 상시근로자가 5만 이상

사병장(건설업의 경우는 공사장이 4,000만원 이상에 해

당)에서 발생하는 재해에 대하여 4만 이상, 1년 이상의 사망을 보

로 하는 것으로 통계재해를 제외한 모든 업무상의 재해

을 말한다.

2.2 재해 지표

일반적으로 사용하고 있는 재해 발생률의 평가방법은 현재의 상태에 대하여 조사·평가하는 것이 아니라, 이전에 발생한 사고율 등, 현재에서 조사하여 그것을 신뢰성 있는 통계적 결과로의 계산으로 표현하는 것이다.

도수율은 일정기간동안 사업장에서 발생하는 재해의 비도를 말하는 것으로 반도율이라고도 한다. 이는 한 사

재가 백만 시간 작업 중 몇 번 재해를 당하였을지를 나

타내는 것이다. 도수율은 해당 작업장 내에 존재하는 위험성의

길번호를 추정할 수 있으나, 셰어율에 상관없이 경기

증상은 아닌 사망도, 사망의 건수에 감사하기 때문에 도수율만으로는 재해의 강도를 알 수가 없다. 연면인

이란 1년간 사상사수의 합계를 평균 근로자수로 나눈

수 1,000을 끝으로 계산한다. 연면인율은 동종 사업장과 비교할 때 동일기간을 가지하고 하야 하므로, 연면인율을 비교할 경우 그 기간을 정확히 하여 1년 동안

한 기간으로 정하여 연연인율이라고 표시한다. 이 값은 비슷한 방법으로 만든다.

도수율이 양적인 상태를 표시하는데 대하여 강도율은 실질적인 상태를 나타내는 것이다. 강도율은 부상으로 인해 작업에 엄격하게 못하는 작업 없는시간율로 근로시간으로

나누고 여기에 1,000을 곱한 것을 말한다. 우리 나라에서는 건설공사의 분야별 강도율이 아닌 건설업 전체에

대하여 하나의 강도율만 발표하고 있다.

표 1은 전체적인 재해통계표의 내용을 요약한 것이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>계산</th>
<th>뉴스</th>
</tr>
</thead>
<tbody>
<tr>
<td>재해율</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Injury Rate)</td>
<td>재해율</td>
<td>재해율</td>
</tr>
<tr>
<td>시</td>
<td>근로자수 100만당 발생하는 재해율계수 비율</td>
<td>근로자수=100,000대 발생하는 사망자수의 비율</td>
</tr>
<tr>
<td>재해율</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fatality Rate)</td>
<td>재해율</td>
<td>재해율</td>
</tr>
<tr>
<td>시</td>
<td>근로자수=10,000당 발생하는 사망자수의 비율</td>
<td>근로자수=1,000명당 발생하는 사망자수의 비율</td>
</tr>
<tr>
<td>연면인율</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Frequency Rate)</td>
<td>연면인율</td>
<td>연면인율</td>
</tr>
<tr>
<td>시</td>
<td>사망자수/연면인율</td>
<td>사망자수/연면인율</td>
</tr>
<tr>
<td>도수율</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Incident Rate)</td>
<td>도수율</td>
<td>도수율</td>
</tr>
<tr>
<td>시</td>
<td>사망자수 발생 비도를 나타내는 것으로 연근로시간계 100만시간당 재해발생 건수</td>
<td>사망자수 발생 비도를 나타내는 것으로 연근로시간계 100만시간당 재해발생 건수</td>
</tr>
<tr>
<td>강도율</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Severity Rate)</td>
<td>강도율</td>
<td>강도율</td>
</tr>
<tr>
<td>시</td>
<td>근로시간 당 발생 비도를 나타내는 것으로 연근로시간계 1,000시간당 재해발생 건수</td>
<td>근로시간 당 발생 비도를 나타내는 것으로 연근로시간계 1,000시간당 재해발생 건수</td>
</tr>
</tbody>
</table>

3. 건설공사 재해통계 분석

3.1 안전공단의 표준자료

안전공단에서 재해자료를 통계분석한 "97년도 산업재

해원리분석"을 이용하여 본 연구의 내용과 범위에 맞게

다시 분석하였다. 이 자료의 사망재해자수는 전수 조사한

106. 대체 건설학회학술신문 통신, 16면 5호 (통년139), 2000년 5월
것이며, 부상재해자수는 사망자와 직업병자를 제외한 전체 산업재해자의 대략 5%를 봤받하여 분석한 자료이다.

1) 시설물별

시설물별 재해자수의 분포는 그림 1과 같다. 건축분야는 상업·공공시설과 아파트 시설에서 재해가 많이 발생하고 있으며, 도로분야는 도로, 지하철·전철 시설에서 사망재해가 많다. 산업허리손상은 석유화학밸런트와 폐기물처리시설에서 재해가 많이 발생하며, 폐기물처리시설은 사망자가 더 많다.

![그림 1. 시설물별 상해정도별 재해자수](image)

2) 공중별

공중별 재해자수의 분포는 그림 2와 같다. 철근콘크리트공사에서 가장 많은 재해자가 발생하였으며, 목공사와 전기공사가 그 다음으로 많다. 전기공사는 목공사보다 재해자수가 적으나, 사망재해자가 6명이 많아 재해의 치명도가 높다고 볼 수 있다. 토양공사는 부상재해만 입는 것으로 보아 위험도는 낮다고 할 수 있다.

![그림 2. 공중별 상해정도별 재해자수](image)

3) 직종별

직종별 재해자수는 그림 3과 같다. 모든 기술분야와 전공중에 걸쳐 공사에 참여하는 직종의 재해자수가 높게 나타났다. 예컨대, 보통인부가 가장 많은 재해를 입고 있으며, 목공, 철근콘크리트공, 전공도 재해자가 많았다. 철근콘크리트공, 전공, 용접공, 도장공, 배관공 등은 부상자보다 사망자수가 높게 나타나 재해의 강도가 다른 직종에 비해 높다고 할 수 있다.

![그림 3. 직종별 상해정도별 재해자수](image)

4) 작업공정별

건설공사의 작업공정에 따른 사망자수와 부상자수는 그림 4와 같다. 원반작업에서 재해가 가장 많이 발생하고 있으며, 거푸집작업과 철근작업에서도 비교적 많이 발생하고 있다. 특히 원반작업의 경우 부상재해보다 사상재해가 더 많아서 재해의 위험도가 높은 것으로 나타났다. 가암작업은 재해가 발생순위는 중간 정도였지만, 사망재해 2배가 많이 발생하고 있다.

보통인부가 재해를 많이 입는 것과 유사하게 이들 직종이 주로 당당하는 정의는 직업에서 재해가 많이 발생하고 있다.

![그림 4. 작업공정별 상해정도별 재해자수](image)

3.2 산재보험급여급 관련 자료

‘97년부터 ‘98년 사이에 산재보험급여급 중징계를 받은 재해자료를 분석에 이용하였다. 안전공단에서 입수한 총 3,100개의 표본 중에서 안전협력과 휴게장정일수를 기준으로 시설물(공사유형), 공정, 작업공정, 직종 등으로 분류하여 위험 정도를 비교·분석하였다. 안전공단의 코드분류에 의하면[표 2 참조], 휴게장정일수는 하나의 정수가 아닌 범위로 되어 있기 때문에, 그 범위의 평균값을 휴게장정일수로 간주하였다. 각 분야별로 휴게장정일수와 재해자수가 비교적 큰 것만을 도시하였으며, 입원된 자료 중에서 공판으로 처리된 자료는 제외하고 분석하였기 때문에

양안 건축공사의 위험성 평가에 관한 연구

대한건축학회지(동양) 16권5호(<통권139>) 2000년 5월 107
각 구분에 따른 총 합계는 다르게 나타날 수 있다.

표 2. 안전공단 휴업예정일수 코드분류

<table>
<thead>
<tr>
<th>코드</th>
<th>휴업예정일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4일 미만</td>
</tr>
<tr>
<td>2</td>
<td>4일 이상 - 7일 미만</td>
</tr>
<tr>
<td>3</td>
<td>1주 이상 - 2주 미만</td>
</tr>
<tr>
<td>4</td>
<td>2주 이상 - 4주 미만</td>
</tr>
<tr>
<td>5</td>
<td>1개월 이상 - 3개월 미만</td>
</tr>
<tr>
<td>6</td>
<td>3개월 이상 - 6개월 미만</td>
</tr>
<tr>
<td>7</td>
<td>6개월 이상 - 12개월 미만</td>
</tr>
<tr>
<td>8</td>
<td>1년 이상</td>
</tr>
<tr>
<td>9</td>
<td>본류분류</td>
</tr>
</tbody>
</table>

1) 시설물(공사유형)별 제재현황

분석에 유의한 표본 수는 837건(29.7%)이었으며, 시설물별 건당 휴업예정일수는 그림 5와 같다. 아파트, 상업, 공공시설, 병원, 학교 등의 제재발생건수가 높다. 특별 시설물에서 건당 휴업예정일수와 인적피해를 살펴보면, 제재의 강도면에서 다소 차이를 보이고 있는데, 예컨대, 철도의 경우 제재건수는 6건에 불과하지만, 건당 휴업예정일수가 248일로 가장 높게 나타나고 있다. 즉, 철도시설은 제재가 발생하면 상대적으로 더 치명적이라고 할 수 있다.

2) 공종별

공종별 제재건당 휴업예정일수는 전체 차로 중에서 유호한 1,876건을 이용하여 분석하였으며 그 결과는 그림 6과 같다. 철근콘크리트공사의 제재건수가 가장 많으나, 건당 휴업예정일수는 148일로서 그 크기 순위 는 낮게(15위) 나타났으며, 창고축가공사, 석유비터공사는 제재발생건수가 10건 미만으로 적지만 건당 휴업예정일수는 285일 이상으로 매우 높게 나타났다.

3) 작풍별

작풍별 제재 건당 휴업예정일수는 그림 7과 같다. 건당 휴업예정일수는 도장공사가 179일로 가장 높으며, 그 다음으로 마장공과 타입공사가 174일과 173일로 나타나 위험도가 크다고 볼 수 있다. 반면에, 보통인부와 목공의 경우 제재는 많이 발생하고 있지만, 건당 휴업예정일수는 상대적으로 적다.

4) 작업환경별

작업환경 구분은 안전공단의 코드분류 기준에 따랐으며, 작업환경별 휴업예정일수가 모두 기입된 자료 459건을 대상으로 분석한 결과는 그림 8과 같다. 제재발생건수가 비교적 적은 가설품작업, 방수작업, 전출작업 등의 건당 휴업예정일수는 150일 이상으로 위험도가 상대적으로 크다고 볼 수 있다. 일반적인 인식과는 달리 비재작업은 제재건수와 건당 휴업예정일수가 다른 공정에 비하여 대체로 적게 나타났다.

4. 위험도 산정

4.1 기초 통계량
건설공사의 위험부도와 장소를 고려한 실질적인 위험
도를 산정하기 위하여 시설물별로 평균 상시근로자수를 계산하였다. 평균 상시근로자수는 인(人)을 기준으로 사업장 규모의 성비차와 하방주의 평균값에 계약근수를 공산하여 산정하였다. 예전에는, 도로공사의 경우 ‘97년도 사업장 규모별 계약근수와 평균 상시근로자수는 표 3과 같다.

4.2 위험도 및 위험도 지수 산정
현재 우리 나라에서는 재해자수, 사망자수, 재해발생건
수, 근로자수, 근로손실일수 등을 고려하여 재해의 정도를 추정하고 있으나, 기업단위나 산업분류 단위로 조사가 발표되고 있다. 또한, 세부 직종과 시설물에 대한 근로자수를 정확하게 파악하지 못했기 때문에 위험의 정도를 산정할 수가 없었다. 기존의 위험도 평가 기법으로 체크
리스트 기법, 결함수 기법 등과 같은 개방적, 정형적 평가 기법을 사용하고 있으나, 경로나 위험에 따라 다르게 위험도를 평가하는 것으로 제조업과 같이 반복되는 공정
에나 적용될 수 있으므로, 본 연구는 시설장 건설공
사의 위험도를 산정하기에 부적합하다. 따라서, 이 연구에서는 건설공사의 위험도를 분야/부문별로 정확
하게 계산하기 위하여 재해건수, 재해자수, 휴업일수, 근로자수 등을 근거로 새로운 위험도 산정 방법을 개발하였다.
1) 용어의 정의
 새로운 위험도를 산정하기 위하여 이 절에서 언급하
는 용어는 다음과 같이 정의한다.
· 환산 재해자수: 현재 산업현황에서 사용하고 있는
 용어로서 사망자수를 상시자수로 환산한 값에 실제 부상
 자수를 더한 값이다. 산업현황기준 제조업은 건설업체
 산업재해별로 산정 시 사망자수에 일정 수치(multiplier)
를 곱하여 부상자수로 환산할 수 있다. 승수나는 매년 노
동부상자수를 공로하고 있으며, 본 연구에서는 ’98년도의
승수 12를 기준으로 부상자수를 산산하였다.
· 환산 휴업일수: 환산 재해자수를 구하는 방법과 동일한 것이다. 즉, 사망자재해자수 12을 곱하고 거기
에 부상자휴업일수의 평균값을 곱하여 산산한 사망
자휴업일수 환산 값과 부상자휴업일수를 더하여
산정 한다.
· 위험도: 강도와 유사한 개념으로 본 연구에서 ' 위험도 지수'와 함께 새로운 개념을 제안하는 용어이다. 건설공
사의 공중별, 작업공정별, 공정별, 직종별 위험의 정도를
계산하기 위한 것으로 계산한 환산 재해자수와
재해 건당 전체 휴업일수를 기하평균하여 산정 하였다.
· 위험도 지수: 건설공사의 기술분야 및 시설물별 위
험도에 각 시설물에 투입된 인력 구성비율을 고려하여
산정한 값이다.

이상에서 기술한 항목에 대한 산정방법은 표 4와 같다.
2) 시설물별

732건의 자료를 이용하여 기술분야와 시설물별 위험도
지수를 산정 하였으며, 그 결과는 표 5와 같다. 가장 위
험한 기술분야는 산업설비분야이며, 그 중 작업 위험도 지
수가 가장 높은 시설물은 재건조리시설이 나타났다. 건
축분야와 토목분야는 산업설비분야에 비하여 위험의 강
도는 낮다고 볼 수 있으나, 재해는 많이 발생하고 있다.
그 이유는 건축과 토목분야의 계약실적이 상대적으로 많
기 때문으로 보인다. 건축분야는 종합적, 체계적, 사고지
성과 상장, 공장시설, 토목분야는 철도와 터널시설의 위
험지수가 높게 나타나 위험한 시설물이라고 판단할 수
있다.
3) 작업공정별

유효한 자료 387건을 이용하여 작업공정별 위험도를

<table>
<thead>
<tr>
<th>표 3. 사업장 규모별 시설물별 계약건수 및 평균 상시근로자수</th>
</tr>
</thead>
<tbody>
<tr>
<td>구분</td>
</tr>
<tr>
<td>도로</td>
</tr>
<tr>
<td>평균 상시근로자수</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 4. 위험도 산정 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험 중</td>
</tr>
<tr>
<td>기초자료</td>
</tr>
<tr>
<td>환산 재해건수</td>
</tr>
<tr>
<td>환산 휴업일수(4)</td>
</tr>
<tr>
<td>위험도(1)</td>
</tr>
<tr>
<td>일반</td>
</tr>
<tr>
<td>재해건수</td>
</tr>
<tr>
<td>휴업일수</td>
</tr>
<tr>
<td>수치</td>
</tr>
</tbody>
</table>

주) 평도 안의 숫자는 표 5~표 9의 열(column) 숫자와 나타낸

4) 산업법시행규칙 발표(‘97. 10. 16).

5) 최근 3년간 사망재해 1인당 산재보험금 기준액(음직여금 및 장
외비)의 평균과 부상자재해 1인당 산재보험금 지급액(요양급여, 휴업급여 및 장외비)의 평균 비율을 고려하여 산정

4) 공종별 총 594건의 자료를 이용하여 공종별 위험도를 비교한 결과는 표 7과 같다. 엘리베이터설치공사의 위험도가 가장 높이 나타났으며, 축정장설치사, 건축공사, 토질토양공사, 관리공사, 일식설비공사 시설공사 및 소방공사의 위험도가 높은 것으로 나타났다.

5) 직종별 직종별 위험도에 이용한 자료 수는 518건이며 표 8에 그 결과를 제시하였다. 여성 위험도가 가장 높은 직종은

<table>
<thead>
<tr>
<th>구분</th>
<th>재해 건수</th>
<th>부상자수</th>
<th>사망자수</th>
<th>환산부상자수</th>
<th>환산사망자수</th>
<th>위험도</th>
<th>위험도 수치(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>구분</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>이외</td>
<td>189</td>
<td>173</td>
<td>32</td>
<td>384</td>
<td>567</td>
<td>12,430</td>
<td>28,952</td>
</tr>
<tr>
<td>주거 시설</td>
<td>48</td>
<td>45</td>
<td>3</td>
<td>36</td>
<td>81</td>
<td>1,721</td>
<td>2,896</td>
</tr>
<tr>
<td>산업</td>
<td>177</td>
<td>155</td>
<td>22</td>
<td>354</td>
<td>419</td>
<td>12,723</td>
<td>20,692</td>
</tr>
<tr>
<td>병원/학교/공공/과학/공공시설</td>
<td>107</td>
<td>95</td>
<td>12</td>
<td>144</td>
<td>239</td>
<td>7,661</td>
<td>11,322</td>
</tr>
<tr>
<td>종합재해/건물/사고재해</td>
<td>13</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>972</td>
<td>972</td>
<td>1,00</td>
</tr>
<tr>
<td>건축부</td>
<td>534</td>
<td>461</td>
<td>69</td>
<td>828</td>
<td>1,309</td>
<td>37,247</td>
<td>64,584</td>
</tr>
<tr>
<td>철도</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>36</td>
<td>38</td>
<td>330</td>
<td>2,966</td>
</tr>
<tr>
<td>지하철/전철</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>24</td>
<td>40</td>
<td>1,313</td>
<td>1,872</td>
</tr>
<tr>
<td>도로</td>
<td>43</td>
<td>34</td>
<td>9</td>
<td>108</td>
<td>142</td>
<td>3,474</td>
<td>4,624</td>
</tr>
<tr>
<td>교량</td>
<td>12</td>
<td>10</td>
<td>2</td>
<td>24</td>
<td>34</td>
<td>612</td>
<td>1,872</td>
</tr>
<tr>
<td>난</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>36</td>
<td>32</td>
<td>402</td>
<td>1,872</td>
</tr>
<tr>
<td>항공수송시설</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>210</td>
<td>2.10</td>
</tr>
<tr>
<td>해양선비수송시설</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>141</td>
<td>936</td>
</tr>
<tr>
<td>공항선비수송시설</td>
<td>21</td>
<td>15</td>
<td>5</td>
<td>60</td>
<td>76</td>
<td>1,221</td>
<td>4,608</td>
</tr>
<tr>
<td>요금부</td>
<td>115</td>
<td>91</td>
<td>24</td>
<td>288</td>
<td>379</td>
<td>7,705</td>
<td>22,645</td>
</tr>
<tr>
<td>체류이동</td>
<td>17</td>
<td>14</td>
<td>3</td>
<td>36</td>
<td>50</td>
<td>1,461</td>
<td>2,808</td>
</tr>
<tr>
<td>신유계철도반도</td>
<td>34</td>
<td>29</td>
<td>5</td>
<td>60</td>
<td>89</td>
<td>2,226</td>
<td>4,666</td>
</tr>
<tr>
<td>신유계철도</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>24</td>
<td>30</td>
<td>651</td>
<td>659</td>
</tr>
<tr>
<td>수처리시설</td>
<td>24</td>
<td>21</td>
<td>3</td>
<td>36</td>
<td>57</td>
<td>2,190</td>
<td>2,906</td>
</tr>
<tr>
<td>신영절비부</td>
<td>83</td>
<td>70</td>
<td>13</td>
<td>156</td>
<td>296</td>
<td>5,355</td>
<td>12,188</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>재해 건수</th>
<th>부상자수</th>
<th>사망자수</th>
<th>환산부상자수×12</th>
<th>환산사망자수</th>
<th>위험도</th>
<th>위험도 수치(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>구분</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>비해적</td>
<td>7</td>
<td>-</td>
<td>7</td>
<td>84</td>
<td>84</td>
<td>-</td>
<td>6,552</td>
</tr>
<tr>
<td>행정적</td>
<td>45</td>
<td>15</td>
<td>31</td>
<td>372</td>
<td>287</td>
<td>1,611</td>
<td>29,016</td>
</tr>
<tr>
<td>통계적</td>
<td>30</td>
<td>42</td>
<td>17</td>
<td>204</td>
<td>246</td>
<td>1,045</td>
<td>15,912</td>
</tr>
<tr>
<td>거주업적</td>
<td>100</td>
<td>54</td>
<td>46</td>
<td>352</td>
<td>266</td>
<td>3,129</td>
<td>43,096</td>
</tr>
<tr>
<td>가설적</td>
<td>29</td>
<td>16</td>
<td>13</td>
<td>156</td>
<td>172</td>
<td>945</td>
<td>12,168</td>
</tr>
<tr>
<td>불연속적</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>1,470</td>
<td>-</td>
</tr>
<tr>
<td>평균적</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>2,232</td>
<td>-</td>
</tr>
<tr>
<td>직능적</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>420</td>
<td>-</td>
</tr>
<tr>
<td>건축적</td>
<td>22</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>2,254</td>
<td>-</td>
</tr>
<tr>
<td>인장적</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>1,071</td>
<td>-</td>
</tr>
<tr>
<td>행정적</td>
<td>21</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>1,905</td>
<td>-</td>
</tr>
<tr>
<td>법적</td>
<td>21</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>1,890</td>
<td>-</td>
</tr>
<tr>
<td>혈적</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>270</td>
<td>-</td>
</tr>
<tr>
<td>의적</td>
<td>21</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>1,754</td>
<td>-</td>
</tr>
<tr>
<td>의료적</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>536</td>
<td>-</td>
</tr>
<tr>
<td>의료적</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>의료적</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>의료적</td>
<td>27</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>27</td>
<td>1,542</td>
<td>-</td>
</tr>
<tr>
<td>의료적</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>453</td>
<td>-</td>
</tr>
</tbody>
</table>

(n=732)
기계설비공과 철골공이며, 그 다음은 전공으로 나타났다. 중기운전공, 케이블공, 단열공은 위험도가 상대적으로 높았다.
6) 공정별
총 739건의 자료를 이용하여 공정별 위험도를 계산한 결과는 표 9와 같다. 공사완료 후의 위험도가 가장 눈
게 나타났으나, 제해결수가 너무 적어서 다른 공정별과 직접 비교하는 것은 적절하지 않다고 판단된다. 그 다음
으로 5% 미만의 공정율이 위험한 것으로 나타났으며, 51%~60%와 71%~80% 사이의 공정율에서도 비교적 개
해의 강도가 큰 것으로 나타났다.

표 7. 공정별 위험도

<table>
<thead>
<tr>
<th>구분</th>
<th>제해결</th>
<th>부상자</th>
<th>사망자</th>
<th>사망자부상자</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계설비공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>철골공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>전공</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>도장공</td>
<td>7</td>
<td>8</td>
<td>24</td>
<td>31</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>타일공</td>
<td>11</td>
<td>11</td>
<td>36</td>
<td>47</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>미장공</td>
<td>19</td>
<td>15</td>
<td>46</td>
<td>63</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>절단공</td>
<td>17</td>
<td>14</td>
<td>36</td>
<td>50</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>보통공</td>
<td>278</td>
<td>263</td>
<td>30</td>
<td>698</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>직접공</td>
<td>119</td>
<td>116</td>
<td>12</td>
<td>144</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>조제공</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>23</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>적군공</td>
<td>38</td>
<td>36</td>
<td>24</td>
<td>60</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>중기운전공</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>케이블공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>단열공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 8. 작물별 위험도

<table>
<thead>
<tr>
<th>구분</th>
<th>제해결</th>
<th>부상자</th>
<th>사망자</th>
<th>사망자부상자</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기계설비공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>철골공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>전공</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>도장공</td>
<td>7</td>
<td>8</td>
<td>24</td>
<td>31</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>타일공</td>
<td>11</td>
<td>11</td>
<td>36</td>
<td>47</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>미장공</td>
<td>19</td>
<td>15</td>
<td>46</td>
<td>63</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>절단공</td>
<td>17</td>
<td>14</td>
<td>36</td>
<td>50</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>보통공</td>
<td>278</td>
<td>263</td>
<td>30</td>
<td>698</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>직접공</td>
<td>119</td>
<td>116</td>
<td>12</td>
<td>144</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>조제공</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>23</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>적군공</td>
<td>38</td>
<td>36</td>
<td>24</td>
<td>60</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>중기운전공</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>케이블공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>단열공</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>596</td>
<td>938</td>
<td>12.00</td>
<td>936.00</td>
<td>105.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(n=594)
표 9. 공정물별 위험도

<table>
<thead>
<tr>
<th>구분</th>
<th>재해건수</th>
<th>부상자수 (1)</th>
<th>사망자수 (2)</th>
<th>사망부상자수 (3)×12</th>
<th>환산부상자수 (4)</th>
<th>환산재해자수 (5)</th>
<th>재해예방인원수 (6)</th>
<th>사망자수 (7)</th>
<th>계 (8)</th>
<th>환산재해자수/ 재해예방인원수 (9)</th>
<th>위험도 (10)</th>
<th>위험도 (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% 미만</td>
<td>20</td>
<td>22</td>
<td>4</td>
<td>48</td>
<td>70</td>
<td>1,571</td>
<td>3,744</td>
<td>5,315</td>
<td>5.5</td>
<td>365.75</td>
<td>30.50</td>
<td></td>
</tr>
<tr>
<td>5% 이상~10% 이하</td>
<td>45</td>
<td>42</td>
<td>3</td>
<td>36</td>
<td>78</td>
<td>3,109</td>
<td>2,806</td>
<td>5,917</td>
<td>1.73</td>
<td>131.49</td>
<td>15.10</td>
<td></td>
</tr>
<tr>
<td>11%~20%</td>
<td>68</td>
<td>69</td>
<td>9</td>
<td>168</td>
<td>197</td>
<td>6,506</td>
<td>8,424</td>
<td>14,729</td>
<td>2.24</td>
<td>167.38</td>
<td>19.36</td>
<td></td>
</tr>
<tr>
<td>21%~30%</td>
<td>70</td>
<td>74</td>
<td>6</td>
<td>72</td>
<td>146</td>
<td>5,683</td>
<td>5,016</td>
<td>11,190</td>
<td>1.87</td>
<td>144.86</td>
<td>18.47</td>
<td></td>
</tr>
<tr>
<td>31%~40%</td>
<td>73</td>
<td>68</td>
<td>8</td>
<td>96</td>
<td>164</td>
<td>5,368</td>
<td>7,488</td>
<td>12,866</td>
<td>2.25</td>
<td>176.02</td>
<td>19.91</td>
<td></td>
</tr>
<tr>
<td>41%~50%</td>
<td>68</td>
<td>58</td>
<td>10</td>
<td>120</td>
<td>178</td>
<td>4,110</td>
<td>9,390</td>
<td>13,470</td>
<td>2.62</td>
<td>198.09</td>
<td>22.77</td>
<td></td>
</tr>
<tr>
<td>51%~60%</td>
<td>59</td>
<td>48</td>
<td>10</td>
<td>120</td>
<td>168</td>
<td>3,417</td>
<td>9,390</td>
<td>12,876</td>
<td>2.90</td>
<td>221.67</td>
<td>25.34</td>
<td></td>
</tr>
<tr>
<td>61%~70%</td>
<td>67</td>
<td>57</td>
<td>11</td>
<td>132</td>
<td>177</td>
<td>4,218</td>
<td>9,390</td>
<td>13,578</td>
<td>2.64</td>
<td>202.66</td>
<td>23.14</td>
<td></td>
</tr>
<tr>
<td>71%~80%</td>
<td>83</td>
<td>81</td>
<td>13</td>
<td>156</td>
<td>237</td>
<td>5,884</td>
<td>12,168</td>
<td>18,062</td>
<td>2.38</td>
<td>217.61</td>
<td>24.93</td>
<td></td>
</tr>
<tr>
<td>81%~90%</td>
<td>82</td>
<td>74</td>
<td>11</td>
<td>132</td>
<td>206</td>
<td>5,177</td>
<td>10,296</td>
<td>15,473</td>
<td>2.51</td>
<td>198.70</td>
<td>21.77</td>
<td></td>
</tr>
<tr>
<td>91% 이상~100% 이하</td>
<td>74</td>
<td>74</td>
<td>8</td>
<td>96</td>
<td>170</td>
<td>6,150</td>
<td>7,488</td>
<td>13,638</td>
<td>2.39</td>
<td>184.30</td>
<td>20.58</td>
<td></td>
</tr>
<tr>
<td>공사종료 후</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>14</td>
<td>171</td>
<td>503</td>
<td>617</td>
<td>1.47</td>
<td>369.01</td>
<td>41.50</td>
<td></td>
</tr>
</tbody>
</table>

(n=739)

5. 결론

건설공사에서 안전은 비용, 시간, 품질 등과 함께 매우 중요한 관리 대상이다. 정부는 건설산업의 재해예방을 위하여 많은 관심과 노력을 기울이고 있으며, 재해예방을 위하여 안전관리의 효율성을 추구하고 있으나, 건설공사의 각 분야에 대한 위험의 정도를 고려하지 않으면서 비용과 인력관리 측면에서 실패성이 낮다.

하나의 건설공사에서도 공사내용과 과정 등에 따라 재해는 양적 그리고 질적인 측면에서 매우 다른 상황을 보인다. 건설재해 발생을 효과적으로 예방하기 위해서는 안전사고, 사고에 대한 많은 분석을 바탕으로 시설설비, 공장설비, 작업장설비, 작업장설비 등에 대한 위험의 정도를 정확하게 파악하여 적절한 대책을 수립해야 한다.

이 연구에서는 안전관리의 '97년도 산업재해사례분석 자료와 선행보험급여급여자료를 근거로 시설설비, 공장설비, 작업장설비, 재해예방, 경영관리 등과 비교 분석하였는데, 그 결과가 유사하게 나타나 두 자료의 신뢰성이 높다고 판단된다.

산재보험급여급여자료를 바탕으로 건설공사의 재해, 사망건수, 사망우해예방인원, 사망재해예방인원을 고려하여 시설설비, 작업장설비, 공장설비, 작업장설비, 공장설비 위험도를 산정하였다. 기술분야에서는 산업설비분야의 위험도 지수가 가장 높게 나타났으며, 그 중에서도 사고설비분야가 높았다. 건축설비는 쌓이형 체계의 작업장설비의 위험도가 높게 나타났으며, 압연체의 설비 공장과 위험도가 가장 높은 공장으로 나타났다. 위험도가 높은 직종은 기계설비공장과 철골공장으로, 5%미만과 51%~60%, 71%~80% 공장에서 재해의 위험도가 높았다.

실 근무시간수, 각 분야별 실 투입 근로자수, 근로시간, 일수 등의 건설자에 관련 자료를 제계적이고 지속적으로 수집할 수 있으며, 각 분야별 위험도를 보다 정확하게 산정할 수 있을 것이다.

본 연구에서 제안한 직종, 공장 등의 위험도에 따라 안전관리자에게 관리의 효율성을 제고할 수 있을 것이며, 그 위험도는 노동관련 정책 및 재해 예방을 위한 기초자료로 활용될 수 있을 것이다.

참고문헌

1. 김용성 외, 건설공사의 위험도 분석, 대한건축학회 '99 추계학술발표대회 논문집 제19권 제2호, pp.968-973, 1999.10
2. 서울대학교 공학연구소 (주)고속건설, 건설안전관리론, 1996.3
3. 이민우 외, 건설공사의 위험도 조사 분석, 대한건축학회 '99 추계학술발표대회 논문집 pp.834-839, 1999.10
4. 한국산업안전공단, 건설공사 종사위험도 조사 및 경영성 지수 연구, 1999.12
5. 한국산업안전공단, 산업재해조사표지분류법
7. 한국산업안전공단, 통계적 보는 1997년도 산업재해 원인 분석, 1998.8